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RESUMO

Nos tltimos anos, a insulinorresisténcia tem sido objecto de indimeros estudos e um dos prin-
cipais alvos da pesquisa e intervencdo farmacol6gicas. Como consequéncia, importantes pas-
sos tém sido dados a um ritmo acelerado, com vista a compreensdo dos mecanismos asso-
ciados a accdo da insulina, bem como as suas alteracdes. Deste modo, a tomada de conhe-
cimento dos mais recentes avancos nesta area e de como eles se encaixam na panoramica
global da accdo da insulina parece ser til, tanto do ponto de vista da pesquisa como do
ponto de vista clinico.

O presente € o primeiro de dois mini-artigos de revisdo acerca da accdo da insulina no apor-
te periférico de glucose. Esta primeira revisdo tem como objectivo dar uma visao geral dos
eventos intracelulares conducentes a captacdo de glucose insulino-dependente, enquanto
que na segunda revisdo sera efectuada uma abordagem da ac¢do da insulina numa perspec-
tiva fisiol6gica, /e, integrativa, dando particular énfase as diferencas na accdo da insulina de
acordo com o estado prandial.

Assim, na presente publicacdo serd dada uma visao sumaria e geral das principais vias de
transducdo de sinal da insulina, envolvidas no aporte de glucose por tecidos periféricos
(extra-hepaticos). Apesar de neste artigo nédo se fazer uma abordagem farmacolégica, espe-
ra-se que constitua uma boa base para compreender os mecanismos associados a fisiopato-
logia e farmacologia das alteracdes na accdo da insulina.

PALAVRAS-CHAVE
Insulina; Accdo da insulina; Receptor de insulina; Transducdo de sinal da insulina; Aporte de
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ABSTRACT

In the recent years, insulin resistance has become the aim of numerous studies and one of the major
focuses for pharmacological research and intervention. As a logical consequence, important steps
towards the knowledge of insulin action and its alterations have been added at a high rate.
Therefore, the awareness about the recent breakthroughs in this field and about how they fit within
the whole picture of insulin action seems to be very useful, both in clinical and research practice.
The present article is the first of two mini-reviews concerning peripheral insulin action in glucose
uptake. This first review article aims at the intracellular events leading to insulin-dependent glu-
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cose uptake, whereas in the second review insulin action will be approached in a whole-body per-

spective, giving particular emphasis to differences in insulin action according to the prandial state.

Thus, in the present review, we will provide a brief overview of the major insulin signaling pathways

involved in peripheral (extra-hepatic) glucose uptake. Although this article does not aim pharma-

cological therapeutic, we hope that it may launch some minimum comprehensive basis to better

understand the mechanism behind the pathophysiology and pharmacology of insulin action.
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Insulin; Insulin action; Insulin receptor; Insulin signalling pathway; Glucose uptake.

INTRODUCTION

Insulin is probably the most important
anabolic hormone in the human organ-
ism'. At the cellular level, its action is char-
acterized by several effects, which suggests
the involvement of multiple signaling path-
ways initiated by the binding of insulin to
the receptor.

The present review aims to provide a brief
overview of the major insulin signaling path-
ways involved in glucose uptake via GLUT4
translocation, in particular in adipose tissue
and skeletal muscle, last of which is responsi-
ble for about 75 % of the insulin-dependent
glucose uptake®. Transposition from the cel-
lular to the physiological level (ie, whole-
body) will be essayed in a second review,
resulting in a broad outline of insulin action
on glucose metabolism and on glucose
uptake in particular.

INSULIN RECEPTOR

The insulin receptor is ubiquitous in ver-
tebrate tissues, although it may be expressed
in different concentrations in different tis-
sues®’. A general schematic representation of
the insulin receptor is provided in figure 1.

Structurally, insulin receptor is an het-
erotetrameric glicoprotein, composed of two
a-subunits and by two B-subunits, with N-
terminal complex carbohydrates capped by
terminal sialic acid residues**. Insulin recep-
tor structure is stabilized by 3 dissulphide
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Schematic representation of the insulin receptor. The insulin receptor pre-
sents two extracellular a-subunits, which contain the domains of insulin
binding, and two p-subunits, where occurs binding of ATP and tyrosine
phosphorylation (regulatory domain — intracellular portion of f-subunits).
Cys, cysteine residue; -S-5-, disulphide bond; Tyr, tyrosine residue; Lys, lysine
residue. @, activation.

bonds that link the two a-subunits to each
other and to the B-subunits, presenting a
(aB); organization®’. The o-subunits are
entirely located in the outside the cell,
whereas B-subunits contain one extracellu-
lar portion, one transmembrane region and
an intracellular region, last of which
includes a juxtamembrane domain, a regu-
latory domain (activation domain) and a
C-terminal domain®®, with different func-
tional roles.

Presently, there are two types of insulin
receptor described: types A and B. The differ-
ence between these two isoforms is the pres-
ence of a 12 aminoacid sequence between
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positions 716 and 717 of the a-subunits of
type A insulin receptor® Type B insulin recep-
tor is highly specific for insulin and promi-
nent in the major target-tissues for insulin
action, such as liver, skeletal muscle and
adipose tissue'. Type A insulin receptor pro-
motes binding of IGF-2 (insulin-like growth
factor 2) instead of insulin and is present in
many fetal tissues, central nervous system
and haematopoietic cells™. Patients with
accummulation of type A receptor in skele-
tal muscle seem to be more prompt to the
development of insulin resistance'.

INSULIN BINDING AND ACTIVA-
TION OF THE RECEPTOR

Insulin binds to one of the a-subunits of
the insulin receptor, bringing the two a-sub-
units closer upon disruption of the
o,-dimer®’. Although there are two major
binding sites (in the two a-subunits — figure
1), only one insulin molecule binds to the
insulin receptor with high affinity, present-
ing a negative cooperativity for insulin con-
centrations lower than 0.1 pmol/dm? .

Insulin binding to the a-subunit induces
tyrosine kinase activity in the regulatory
domain of the intracellular portion of the
B-subunit, promoting phosphorylation of
tyrosine residues of this domain and con-
comitant activation of the insulin receptor -
autophosphorylation.

Autophosphorylation of the insulin
receptor is the key step in the initiation of
the intracellular signalling and it may occur
at seven different tyrosine residues, located
in the three regions of the B-subunits with
tyrosine kinase activity (juxtamembrane,
regulatory or activation and C-terminal)®.
However, the process seems to be initiated
by phosphorylation of the tyrosine!!?
residue of the regulatory domain® (figure 1).

Insulin binding induces conformational
changes in the regulatory (or activation)
domain that allow binding to ATP, favoring
the initial phosphorylation of the tyro-

© 2011 - SOCIEDADE PORTUGUESA DE ENDOCRINOLOGIA, DIABETES E METABOLISMO

sine''® residue (regulatory domain) and,
subsequently, the remaining tyrosine
residues of the regulatory domain of the
insulin receptor®. Phosphorylation of tyro-
sine residues in the insulin receptor allow
the recruitment, docking and activation of
the efector proteins involved in the signal-
ing cascade that present SH2 (Src-2 homolo-
gy) domains*"**. Many of these efector pro-
teins are small adaptive molecules, such as
p85, which is the requlatory subunit of the
enzyme phosphatidylinositol-3-kinase
(PI3K) and of Crkil, a small protein G acti-
vation molecule?.

After insulin binding and activation of
the insulin receptor, the complex insulin-
insulin receptor is internalized and incorpo-
rated into endossomes, still in an active
form, which facilitates the binding of the
cytoplasmatic substrates'.

Interestingly, in the absence of insulin,
a-subunits seem to exert a negative effect
upon the regulatory domains, thus blocking
the signal transduction cascade***'*".

This unusual form of activation seems
to allow small molecules to interact with the
insulin receptor in distinct sites from the
activation domains of insulin®.

INSULIN SIGNALING PATHWAYS
INVOLVED IN GLUCOSE UPTAKE

Both insulin receptor and the majority
of the proteins involved in insulin signalling
are activated by tyrosine residues phospho-
rylation®.

There are several intracellular substrates
of the insulin receptor that can be phospho-
rylated at tyrosine residues by the receptor
itself: Gab1, p60™*, APS, Shc isoforms, Cbl
and the proteins of the IRS family (insulin
receptor substrate). Many of these proteins
are common substrates of the insulin recep-
tor and of the IGF-1 receptor; however, the
different specificity of both recruitment and
phosphorylation ensure an adequate regu-
lation of the signalling cascades of insulin
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and IGF-1 receptors®.

Aditionally, APS, Cbl and IRS proteins,
in particular, have been associated with the
process of glucose uptake through stimula-
tion of glucose trasporters-4 (GLUT4)
translocation®.

Figure 2 summarizes the major insulin
signaling pathways that involve these sub-
strates, leading to GLUT4 translocation and
glucose uptake.

FIGURE 2

Major insulin signaling pathways for glucose uptake acting through glucose
transporters-4 (GLUT4). Insulin receptor substrate-1 (IRS1) was used, since it
is the most common protein in the IRS family. Tyr, tyrosine; PI3K, 3-phos-
phatidylinositol kinase; PI3P, 3- phosphatidylinositol phosphate; PDK1, phos-
phoinositide-dependent kinase; Akt/PKB, protein B kinase; PKCC/A, atypical
proteln C kinases; AS160, Akt Substrate of 160 kDa; PLC, phospholipase C;
DAG, diacylglycerol; IP;, 1,4,5- Inositol triphosphate; APS, adaptative protein
with PH and SH2 domains; Cbl, protooncogene Casitas b-lineage lymphoma
(c-Cbl); CAP, Cbl-associated protein.

The most relevant mediators of insulin
action in glucose uptake by skeletal muscle
and adipocytes are the IRS proteins, in par-
ticular IRS-1 and IRS-2. In mammals, four
major proteins of the IRS family were
described: IRS-1, expressed in skeletal mus-
cle and adipose tissue; IRS-2, present in the
brain, ovary, liver and adipose tissue; IRS-3,
expressed in adipose tissue, presumably in
rodents only; and IRS-4, present in the thy-
mus and kidney®. IRS proteins present an
amine terminal, with binding domains for
the insulin receptor and a carboxyl termi-
nal, with tyrosine phosphorylation sites®.

Following tyrosine phosphorylation, IRS
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protein activates PI3K, which plays a central
role in GLUT4 translocation. IRS activates
PI3K by binding to p85 regulatory subunit,
which presents two SH2 domains that bind
to phosphorylated residues in IRS proteins®
Besides p85 subunit, PI3K presents a p110
catalitic subunit, responsible for phospho-
inositides phosphorylation at position 3,
producing phospholipidic compounds of the
phosphatidylinositol-3-phosphate  (PI13P)
family, namely phosphatidylinositol-3,4,5-
triphosphate (PtdInsP3)

PI3P (and PtdInsP; in particular) acti-
vate phosphoinositide-dependent kinase 1
(PDK1), which in turn activates protein
kinase B (Akt/PKB) and the atypical protein
kinase C (PKCT and PKCA) It has also been
described that PtdInsP; can bind directly to
PKC (PKCT and PKCA)"® and to Akt/PKB,
activating them? therefore not requiring
PDK1 as an intermediate.

Active Akt/PKB then promotes phospho-
rylation of Akt Substract of 160 kDa protein
(AS160)*, which is constitutively associated
to GLUT4 vesicles” and in particular to Rab
proteins, small G proteins involved in the
processes of transport and fusion of GLUT4
vesicles to plasma membrane®. Thus,
AS160 phosphorylation by Akt/PKB pro-
motes activation of the Rab proteins?#,
leading to a higher rate of GLUT4 transloca-
tion® - this topic will be further explored in
the next section. On the other hand, PI3K
can activate phospholipase C (PLC), result-
ing in the production of the second messen-
gers DAG and inositol triphosphate (IP3),
which activate PKCT, thus stimulating glu-
cose uptake? (figure 2).

An additional insulin signalling path-
way contributing to GLUT4 translocation
and somehow independent of IRS phospho-
rylation and PI3K activation is described’,
and also presented in figure 2.

Such pathway involves phosphorylation
of both APS (adaptive protein with SH2 and
PH domains, last of which is present in
Akt/PKB, allowing this enzyme to bind
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PtdInsP;) and Cbl protooncogene (Casitas b-
lineage lymphoma, c-Cbl)** directly by the
IR*22%, APS is involved in Cbl recruitment for
the insulin receptor®. In the majority of
insulin-sensitive cells Cbl is associated with
the adaptive protein CAP (Cbl-associated
protein)®. Following phosphorylation, the
Cbl-CAP complex is transported into lipid
rafts in the plasma membrane, where it
binds to flotilin and recruits CrkIl proteinZ.
Crkil then forms a complex with the guanyl
nucleotide exchange protein C3G?¥, which
activates TC10**. TC10 is a GIP-binding
protein present in the lipid rafts that con-
tributes to GLUT4 translocation and their
docking at the plasma membrane*®, possi-
bly though regulation of actin microfila-
ments dynamics?2#,

Although the TC10 pathway can be
seen as an separate pathway from the PI3K-
dependent one, some studies have suggest-
ed that TC10 activates PI3P* and others
have described that atypical PKC (PKCT and
PKCA) are also able to promote TC10 activa-
tion***2. Thus, atypical PKC may represent a
point of convergence for the PI3K and TC10
signaling pathways”, both of which con-
tributing synergistically to GLUT4 transloca-
tion (figure 2).

GLUT4 TRANSLOCATION

GLUT4, present mostly in skeletal mus-
cle and adipocyte, are located within vesi-
cles that move in a cyclic manner between
the intracellular storing sites and plasma
membrane. Insulin promotes the presence
of GLUT4 at the plasma membrane in two
distinct, but synergistic ways: by increasing
the rate of GLUT4 exocytosis and by reduc-
ing their internalization rate®*.

As in the case of the insulin secretory
granules in B-pancreatic cells, GLUT4 vesi-
cles also seem to be translocated towards
the plasma membrane by means of a sys-
tem involving mycrotubules network and
actin polymerization®**. Actin remodeling is
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required not only for translocation of the
GLUT4 vesicles, but also to their fusion with
the plasma membrane’.

As stated in the previous section and
presented in figure 2, the remodeling or
reorganization of the actin filaments in
response to insulin binding to the receptor
appears to be modulated by both the TC10
and IRS/PI3K pathways, through activation
of the Rab proteins®.

Rab proteins have been shown to be nec-
essary effectors in vesicle trafficking, docking
and fusion. In particular, Rabs 2A, 8A, 10,
and 14 are expressed in insulin-sensitive tis-
sues and appear to be substrates of the
AS160 GAP domain (IRS/PI3K pathway) and
are associated with insulin-responsive
GLUT4-containing vesicles®**. AS160 thus
may represent a convergence between
insulin signaling and vesicle trafficking®.
AS160 is a negative regulator of basal
GLUT4 exocytosis, ie, in basal conditions,
AS160 associates with GLUT4 vesicles, main-
taining Rab proteins in their inactive form
(Rab-GDP)**. Insulin-stimulated phospho-
rylation of S160 (PI3K pathway) inhibits
AS160 negative effect on Rab proteins, caus-
ing a shift towards Rabs activation (Rab-GTP
complex formation) and allowing for Rab-
dependent GLUT4 translocation to
occur®a447,

As mentioned earlier, TC10 can also
stimulate the Rab proteins mechanism
through activation of PI3P (figure 2).
Additionally, TC10 seems to activate actin-
related protein 3 (Arp3), actin-regulatory
neural Wiskott-Aldrich syndrome protein
(N-WASP)* and exocyst protein complex®,
which are involved in the regulation of
actin polymerization (N-WASP and Arp3),
as well as docking and anchoring of GLUT4
vesicles to the plasma membrane (exocyst
protein complex)****. This TC10-mediated
process is required for the subsequent fusion
of GLUT4 vesicles to the plasma membrane
carried out by soluble N-ethylmaleimide-
sensitive factor (NSF) attachment protein
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receptors (SNARE), namely SNAP-23, syn-
taxin 4, Synip, Munc18c and vesicle-associ-
ated membrane protein-2 (VAMP2) and and
the plasma membrane proteins synapto-
some-associated 25-kDa protein and syn-
taxin-1A%*4,

INHIBITION OF THE INSULIN SIG-
NALING CASCADE

Besides tyrosine phosphorylation (figure
2), both insulin receptor and IRS proteins
have the potential to be phosphorylated at
serine or threonine residues , which blocks
or impairs the insulin signaling pathway***.
Such inhibitory effect of serine/threonine
phosphorylation is achieved by reducing
the number of phosphorylated tyrosine
residues®*®**, by dissociating IRS proteins
from their receptor, hindering tyrosine
residues phosphorylation®*, by releasing IRS
from the intracellular complexes that main-
tain them in close proximity to the recep-
tor””, by promoting IRS degradation*, or by
inducing IRS interaction with other proteins
rather than with the tyrosine kinase catalyt-
ic site of PI3K*>*.

These inhibitory (serine/threonine)
phosphorylations constitue a physiological
feedback mechanism in insulin signaling®
and allow the establishment of cross-talk
mechanisms with different pathophysiolog-
ical pathways that promote insulin resist-
ance**** Indeed, most of the stress and/or
inflammation pathways studied so far stim-
ulate serine/threonine phosphorylation of
either IRS or insulin receptor (or both) as a
way to induce insulin resistances.

Several kinases are known to be
involved in the process of serine/threonine
phosphorylation-dependent  regulation,
namely PI3K, Akt/PKB, glycogen synthase
kinase-3 (GSK3) and mammalian target of
rapamycin (mTOR)?, as well as PKC* and
the inhibitor of nuclear factor k (IkB)
kinase? these last two (PKC and IkB) have
been suggested to be involved in the obesi-
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ty-induced insulin resistance****.

Insulin action is also attenuated by pro-
tein tyrosine phosphatases (PTPases) that
promote tyrosine dephosphorylation of the
insulin receptor and its substrates**, a mech-
anism that seems to be augmented in many
insulin resistant conditions***, particularly in
those associated with inflammation®.
Indeed, in studies using transgenic knockout
of PTP1B models was observed an increase in
the number of phosphorylated tyrosine
residues, in both the receptor and IRS pro-
teins, as well as an amelioration of insulin
sensitivity in muscle? and liver”*®, improving
or avoiding the diabetic condition®.

CONCLUSION

Insulin plays a central role in carbohy-
drate metabolism. Although insulin presents
different effects in different target-organs,
one can consider that its major role in extra-
hepatic tissues, such as skeletal muscle and
adipose tissue, is to promote glucose uptake.
The knowledge of the molecular aspects of
insulin action is important to understand
the mechanism underlying pathophysiology
and pharmacology of insulin resistance. In
the present mini-article, we provided a brief
review of the main signaling pathways that
ensure insulin-stimulated glucose uptake.

The insulin receptor is an obvious target
molecule to pharmacologically potentiate
insulin action. However, other molecules
can be key players for this purpose. Akt/PKB
is also a pivotal molecule for insulin signal-
ing pathways. However, in those tissues that
are dependent on insulin to acquire glucose,
GLUT4 is the main glucose transporter
available. Indeed, most insulin signaling
pathways will ultimately lead to GLUT4
expression and/or translocation.
Furthermore, even insulin-independent
pathways promote glucose uptake via
GLUT4 translocation. Therefore, GLUT4 can
be considered as an essential key player and
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target molecule for the study and/or modu-
lation of different insulin signaling path-
ways involved in glucose uptake, since
GLUT4 compliance should always be
ensured in order to allow insulin-dependent
glucose uptake.

The molecular aspects summarized
herein constitute the basis for a second
review, in which insulin action will be
approached from a whole-body physiologi-
cal perspective, more directed to the clinic.
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